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Abstract—We present a support vector regression (SVR) ratio-
nale for treating complex data, exploiting the notions of widely
linear estimation and pure complex kernels. To compute the
Lagrangian and derive the dual problem, we employ the recently
presented Wirtinger’s calculus on complex RKHS. We prove that
this approach is equivalent with solving two real SVR problems
exploiting a specific real kernel, which it is induced by the chosen
complex kernel.

I. INTRODUCTION

The support vector machines (SVM) framework has become

a popular toolbox for addressing classification, regression and

time series prediction tasks. Their excellent performance was

firmly grounded in the context of statistical learning theory

(or VC theory as it is also called, giving credit to Vapnik

and Chervonenkis, the authors who developed it), which

ensures their supreme generalization properties. Thus, support

vector classifiers are amongst the most efficient algorithms

for treating real world applications such as optical character

recognition, and object recognition problems. In the context

of regression, this toolbox is usually called as Support Vector

Regression (SVR).

The original support vector machines algorithm is a non-

linear generalization of the Generalized Portrait algorithm

developed in the former USSR in the sixties. The introduction

of non-linearity was carried out via a computationally elegant

way known today to the machine learning community as the

kernel trick [1]:

“Given an algorithm which is formulated in terms

of dot products, one can construct an alternative

algorithm by replacing each one of the dot products

with a positive definite kernel κ.”

This has sparkled a new breed of techniques for addressing non

linear tasks, the so called kernel-based methods. Currently,

kernel-based algorithms are a popular tool employed in a

variety of scientific domains, ranging from adaptive filtering

and image processing [2], [3], [4], [5] to biology and nuclear

physics [6], [7].

In kernel-based methods, the notion of the Reproducing

Kernel Hilbert Space (RKHS) plays a crucial role. The original

data are transformed into a higher dimensional RKHS H
(possibly of infinite dimension) and linear tools are applied

to the transformed data in the feature space H. This is

equivalent to solving a non-linear problem in the original

space. Furthermore, inner products in H can be computed

via the specific kernel function κ associated to the RKHS H,

disregarding the actual structure of the space.

Although, the theory of RKHS has been developed by the

mathematicians for general complex spaces, most kernel-based

methods (as they are targeted to treat real data) employ real

kernels. However, complex data arise frequently in applica-

tions as diverse as communications, biomedicine, radar, etc.

The complex domain not only provides a convenient and

elegant representation for such signals, but also a natural way

to preserve their characteristics and to handle transformations

that need to be performed. In this context, [5] introduced the

necessary toolbox for addressing complex tasks in general

(of even infinite dimensionality) kernel spaces, while [8],

[9] paved the road for applying the (increasingly popular in

complex signal processing) widely linear estimation filters.

In this work, exploiting [5], [8], [9], we present the complex

support vector regression algorithm to treat complex valued

training data. We prove that working in a complex RKHS H,

with a pure complex kernel κC, is equivalent to solving two

problems in a real RKHS H, with a specific real kernel κR

induced by κC. Our emphasis in this paper is to outline the

theoretical development and to verify the validity of our results

via a simulation example. The comparative performance of

the method in more practical applications will be reported

elsewhere, due to lack of space. The paper is organized as

follows. In Section II the main mathematical background

is outlined and the differences between real RKHS’s and

complex RKHS’s are highlighted. Section III describes the

standard real SVR algorithm. The main contributions of the

paper can be found in Section IV, where the theory and the re-

spective algorithms are developed. Experiments are presented

in Section V. Finally, section VI contains some concluding

remarks.

II. COMPLEX RKHS

Throughout the paper, we will denote the set of all integers,

real and complex numbers by N, R and C respectively. Vector

or matrix valued quantities appear in boldfaced symbols. A

RKHS [10] is a Hilbert space H over a field F for which

there exists a positive definite function κ : X ×X → F with

the following two important properties: a) For every x ∈ X ,



κ(·, x) belongs to H and b) κ has the so called reproduc-

ing property, i.e., f(x) = 〈f, κ(·, x)〉H, for all f ∈ H, in

particular κ(x, y) = 〈κ(·, y), κ(·, x)〉H. The map Φ : X →
H : Φ(x) = κ(·, x) is called the feature map of H. Recall,

that in the case of complex Hilbert spaces (i.e., F = C) the

inner product is sesqui-linear (i.e., linear in one argument and

antilinear in the other) and Hermitian. In the real case, the

symmetry condition implies κ(x, y) = 〈κ(·, y), κ(·, x)〉H =
〈κ(·, x), κ(·, y)〉H. However, since in the complex case the

inner product is Hermitian, the aforementioned condition is

equivalent to κ(x, y) = (〈κ(·, x), κ(·, y)〉H)
∗
= κ∗(y, x). In

the following, we will denote by H a complex RKHS and by

H a real one.

Definitely, the most popular real kernel in the literature

is the Gaussian radial basis function, i.e., κt,Rν (x,y) :=
exp

(

−t
∑ν

k=1
(xk − yk)

2
)

, defined for x,y ∈ Rν , where t
is a free positive parameter. Many more can be found in

[1], [11], [12], [13]. Correspondingly, an important complex

kernel is the complex Gaussian kernel, which is defined as:

κt,Cν (z,w) := exp
(

−t
∑ν

k=1
(zk − w∗

k)
2
)

, where z,w ∈
Cν , zk denotes the k-th component of the complex vector

z ∈ Cν and exp(·) is the extended exponential function in the

complex domain.

In order to compute the gradients of real valued cost

functions, which are defined on complex domains, we adopt

the rationale of Wirtinger’s calculus [14]. This was brought

into light recently [15], [16], [17], [18], [19], as a means to

compute, in an efficient and elegant way, gradients of real

valued cost functions that are defined on complex domains

(Cν). It is based on simple rules and principles, which bear a

great resemblance to the rules of the standard complex deriva-

tive, and it greatly simplifies the calculations of the respective

derivatives. The difficulty with real valued cost functions is

that they do not obey the Cauchy-Riemann conditions and are

not differentiable in the complex domain. The alternative to

Wirtinger’s calculus would be to consider the complex vari-

ables as pairs of two real ones and employ the common real

partial derivatives. However, this approach, usually, is more

time consuming and leads to more cumbersome expressions. In

[5], the notion of Wirtinger’s calculus was extended to general

complex Hilbert spaces, providing the tool to compute the

gradients that are needed to develop kernel-based algorithms

for treating complex data.

III. REAL VALUED SUPPORT VECTOR REGRESSION

Suppose we are given training data of the form

{(xn, yn); n = 1, . . . , N} ⊂ X × R, where X = Rν denotes

the space of input patterns. Furthermore, let H be a real RKHS

with kernel κR. We transform the input data from X to H, via

the feature map Φ, to obtain the data {(Φ(xn), yn); n =
1, . . . , N}. In support vector regression, the goal is to find

an affine function T : H → R : T (g) = 〈w, g〉H + b, for

some w ∈ H, b ∈ R, which is as flat as possible and has

at most ǫ deviation from the actually obtained values yn, for

all n = 1, . . . , N . Observe that at the training points Φ(xn),
T takes the values T (Φ(xn)). Thus, this is equivalent with

finding a non-linear function f defined on X such that

f(x) = T ◦ Φ(x) = 〈w,Φ(x)〉H + b, (1)

for some w ∈ H, b ∈ R, which satisfies the aforementioned

properties. The usual formulation of this problem as an opti-

mization task is the following:

minimize
w,b

1

2
‖w‖2

H
+ C

N

N
∑

n=1

(ξn + ξ̂n)

subject to







〈w,Φ(xn)〉H + b− yn ≤ ǫ+ ξn
yn − 〈w,Φ(xn)〉H − b ≤ ǫ+ ξ̂n

ξn, ξ̂n ≥ 0

(2)

for n = 1, . . . , N . The constant C determines a tradeoff

between the tolerance of the estimation (i.e., how many larger

than ǫ deviations are tolerated) and the flatness of the solution

(i.e., T ). This corresponds to the so called ǫ-insensitive loss

function |ξ|ǫ = max{0, |ξ| − ǫ}, [20], [11].

To solve (2), one considers the dual problem derived by the

Lagrangian:

maximize
a,â























− 1

2

N
∑

n,m=1

(ân − an)(âm − am)κ(xn, xm)

−ǫ

N
∑

n=1

(ân + an) +

N
∑

n=1

yn(ân − an)

subject to

N
∑

n=1

(ân − an) = 0 and an, ân ∈ [0, C/N ].

(3)

Note that an and ân are the Lagrange multipliers corre-

sponding to to the first two inequalities of problem (6), for

n = 1, 2, . . . , N . Exploiting the saddle point conditions, it

can be proved that w =
∑N

n=1
(an − ân)Φ(xn) and thus the

solution becomes

f(x) =

N
∑

n=1

(ân − an)κR(xn,x) + b. (4)

Furthermore, exploiting the Karush-Khun-Tuker (KKT) con-

ditions one may compute the parameter b.

Several algorithms have been proposed for solving this

problem, amongst which are Platt’s celebrated Sequential

Minimal Optimization (SMO) algorithm [21], interior point

methods [22], and geometric algorithms [23], [24]. A more

detailed description of the SVR machinery can be found in

[25].

IV. COMPLEX SUPPORT VECTOR REGRESSION

Suppose we are given training data of the form

{(zn, dn); n = 1, . . . , N} ⊂ X × C, where X = Cν denotes

the space of input patterns. As zn is complex, we denote by

xn its real part and by yn its imaginary part respectively, i.e.,

zn = xn+iyn, n = 1, . . . , N . Similarly, we denote by drn and

din the real and the imaginary part of dn, i.e., dn = drn+i∗din,

n = 1, . . . , N .
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Fig. 1. The element Φ((0, 0)T ) = 2κ1(·, (0, 0)T ) of the induced real
feature space of the pure complex kernel.

A. Dual Channel SVR

A straightforward approach for addressing this problem

(as well as any problem related with complex data) is

by considering two different problems in the real domain

(this technique is usually referred to as the dual chan-

nel approach). That is, split the training data into two

sets {((xn,yn)
T , drn); n = 1, . . . , N} ⊂ R2ν × R and

{((xn,yn)
T , din); n = 1, . . . , N} ⊂ R2ν × R, and perform

support vector regression to each set of data using a real kernel

κR and its corresponding RKHS. This is equivalent to the

complexification procedure described in [5]. We emphasize

that the approach considered here is different from the dual

channel rationale. We will develop a framework for solving

such a problem on the complex domain employing pure

complex kernels, instead of real ones. Nevertheless, we will

show that using complex kernels for SVR is equivalent with

solving two real problems using a real kernel. This kernel,

however, is induced by the selected complex kernel and it is

not one of the standard kernels appearing in machine learning

literature. For example, the use of the complex Gaussian kernel

induces a real kernel, which is not the standard real Gaussian

rbf (see figure 1). It has to be pointed out that, the dual channel

approach and the pure complex approach considered here give

different results (see [9], [8]). Depending on the case, the pure

complex approach might show increased performance over the

dual channel approach and vice versa.

B. Pure Complex SVR

Let H be a complex RKHS with kernel κC. We transform

the input data from X to H, via the feature map Φ, to obtain the

data {(Φ(zn), yn); n = 1, . . . , N}. In analogy with the real

case and following the principles of widely linear estimation,

in complex support vector regression the goal is to find a

function T : H → C : T (g) = 〈g, u〉H + 〈g∗, v〉H + c, for

some u, v ∈ H, c ∈ C, which is as flat as possible and has

at most ǫ deviation from both the real and imaginary parts

of the actually obtained values dn, for all n = 1, . . . , N . We

emphasize that we employ the widely linear estimation func-

tion S1 : H → C : S1(g) = 〈g, u〉H + 〈g∗, v〉H instead of the

usual complex linear function S2 : H → C : S1(g) = 〈g, u〉H
following the ideas of [17], which are becoming quite popular

in complex signal processing [26], [27], [28], [29] and have

been generalized for the case of complex RKHS in [8], [9].

Observe that at the training points Φ(zn), T takes the values

T (Φ(zn)). Following similar arguments as with the real case,

this is equivalent with finding a complex non-linear function

f defined on X such that

f(z) = T ◦ Φ(z) = 〈Φ(z), u〉H + 〈Φ∗(z), v〉H + c, (5)

for some u, v ∈ H, b ∈ C, which satisfies the aforementioned
properties. We formulate the complex support vector regres-
sion task as follows:

min
u,v,b

1

2
‖u‖2H + 1

2
‖v‖2H + C

N

N
∑

n=1

(ξrn + ξ̂rn + ξin + ξ̂in)

s. t.























Re(〈Φ(zn), u〉H + 〈Φ(zn), v〉H + b− dn) ≤ ǫ+ ξrn
Re(dn − 〈Φ(zn), u〉H − 〈Φ∗(zn), v〉H − b) ≤ ǫ+ ξ̂rn
Im(〈Φ(zn), u〉H + 〈Φ(zn), v〉H + b− dn) ≤ ǫ+ ξin
Im(dn − 〈Φ(zn), u〉H − 〈Φ∗(zn), v〉H − b) ≤ ǫ+ ξ̂in

ξrn, ξ̂
r
n, ξ

i
n, ξ̂

i
n ≥ 0

(6)

To solve 6, we derive the Lagrangian and the KKT condi-
tions to obtain the dual problem. Thus we take:

L(u, v,a, â, b, b̂) = 1

2
‖u‖2 + 1

2
‖v‖2 + C

N

N
∑

n=1

(ξrn + ξ̂rn + ξin + ξ̂in)

+
N
∑

n=1

an(Re(〈Φ(zn), u〉H + 〈Φ(zn), v〉H + c− dn)− ǫ− ξrn)

+

N
∑

n=1

ân(Re(dn − 〈Φ(zn), u〉H − 〈Φ∗(zn), v〉H − c)− ǫ− ξ̂rn)

+

N
∑

n=1

bn(Im(〈Φ(zn), u〉H + 〈Φ(zn), v〉H + c− dn)− ǫ− ξin)

+
N
∑

n=1

b̂n(Im(dn − 〈Φ(zn), u〉H − 〈Φ∗(zn), v〉H − c)− ǫ+ ξ̂in)

−

N
∑

n=1

ηnξ
r
n −

N
∑

n=1

η̂nξ̂
r
n −

N
∑

n=1

θnξ
i
n −

N
∑

n=1

θ̂nξ̂
i
n,

(7)

where an, ân, bn, b̂n, ηn, η̂n, θn, θ̂n are the Lagrange

multipliers. To exploit the saddle point conditions, we employ

the rules of Wirtinger’s Calculus for the complex variables on

complex RKHS’s as described in [5] and deduce that

∂L

∂u∗
=
1

2
u+

1

2

N
∑

n=1

anΦ(zn)−
1

2

N
∑

n=1

ânΦ(zn)

−
i

2

N
∑

n=1

bnΦ(zn) +
i

2

N
∑

n=1

b̂nΦ(zn),



Fig. 2. Pure Complex Support Vector Regression. The difference with the dual channel approach is due to the incorporation of the induced kernel κ1, which
depends on the selection of the complex kernel κC. In this context one exploits the complex structure of the space, which is lost in the dual channel approach.

∂L

∂v∗
=
1

2
v +

1

2

N
∑

n=1

anΦ
∗(zn)−

1

2

N
∑

n=1

ânΦ
∗(zn)

−
i

2

N
∑

n=1

bnΦ
∗(zn) +

i

2

N
∑

n=1

b̂nΦ
∗(zn),

∂L

∂b∗
=
1

2

N
∑

n=1

an −
1

2

N
∑

n=1

ân +
i

2

N
∑

n=1

bn −
i

2

N
∑

n=1

b̂n.

For the real variables we compute the gradients in the tradi-

tional way:

∂L
∂ξr

n

= C
N

− an − ηn,
∂L

∂ξ̂r
n

= C
N

− ân − η̂n,

∂L
∂ξi

n

= C
N

− bn − θn,
∂L

∂ξ̂i
n

= C
N

− b̂n − θn.

for all n = 1, . . . , N .

As all gradients have to vanish for the saddle point condi-

tions, we finally take that

u =

N
∑

n=1

(ân − an)Φ(zn)− i

N
∑

n=1

(b̂n − bn)Φ(zn), (8)

v =

N
∑

n=1

(ân − an)Φ
∗(zn)− i

N
∑

n=1

(b̂n − bn)Φ
∗(zn), (9)

N
∑

n=1

(ân − an) =

N
∑

n=1

(b̂n − bn) = 0, (10)

ηn = C
N

− an, η̂n = C
N

− ân,

θn = C
N

− bn, θ̂n = C
N

− b̂n,
(11)

for n = 1, . . . , N . In addition, the complex kernel κC can be
written as

κC (z,w) = κ1

((

zr

zi

)

,

(

wr

wi

))

+ iκ2

((

zr

zi

)

,

(

wr

wi

))

, (12)

where κ1, κ2 are real functions defined on R2ν × R2ν and

c = cr + ici. Note that κ1, κ2 can be seen either as functions

defined on R
2ν × R

2ν , or as functions defined on C
ν × C

ν .

Furthermore, the following Lemma holds:

Lemma IV.1. If κC(z,w) is a complex kernel, then

κr

((

z
r

z
i

)

,

(

w
r

w
i

))

= Re(κC(z,w)), (13)

where z
r, zi, wr, wi are the real and imaginary parts of z

and w respectively, is a real kernel.

Proof: Consider c1, . . . , cN ∈ R. Then, as κC is a

complex positive definite kernel, for every z1, . . . , zN ∈
C we have that

∑N

n,m=1
cncmκC(zn, zm) ≥ 0. Consid-

ering that κC(z,w) = κ1(z,w) + iκ2(z,w) and that
∑N

n,m=1
cncmκ2(zn, zm) = 0, we finally obtain that

∑N

n,m=1
cncmκ1(zn, zm) ≥ 0, which means that κ1 is a real

kernel.
Eliminating ηn, η̂n, θn, θ̂n via (11) and u, v via (8-9) we

obtain the final form of the Lagrangian:

L = −
N
∑

n,m=1

(ân − an)(âm − am)κ1(zn,zk)

−
N
∑

n,m=1

(b̂n − bn)(b̂m − bm)κ1(zn,zk)

−ǫ
N
∑

n=1

(an + ân + bn + b̂n)

+
N
∑

n=1

xn(ân − an) +
N
∑

n=1

yn(b̂n − bn),

(14)



where xn, yn are the real and imaginary parts of zn, n =
1, . . . , N . This means that we can split the dual problem into

two maximization tasks:

maximize
a,â























−

N
∑

n,m=1

(ân − an)(âm − am)κ1(xn, xm)

−ǫ

N
∑

n=1

(ân + an) +

N
∑

n=1

xn(ân − an)

subject to

N
∑

n=1

(ân − an) = 0 and an, ân ∈ [0, C/N ],

(15)

and

maximize
b,b̂























−
N
∑

n,m=1

(b̂n − bn)(b̂m − bm)κ1(xn, xm)

−ǫ
N
∑

n=1

(b̂n + bn) +
N
∑

n=1

yn(b̂n − bn)

subject to

N
∑

n=1

(b̂n − bn) = 0 and bn, b̂n ∈ [0, C/N ].

(16)

Observe that the two maximization tasks, (15) and (16), are

equivalent with the dual problem of a standard real support

vector regression task with kernel 2κ1. This is a real kernel,

as Lemma IV.1 establishes. Therefore (figure 2), one solves the

two real SVR tasks for an, ân, cr, bn, b̂n, ci and combines

them to find the solution of the complex problem as

f(z) =〈Φ(z), u〉H + 〈Φ∗(z), v〉H + c

=2

N
∑

n=1

(ân − an)κ1(zn, z) (17)

+ 2i

N
∑

n=1

(b̂n − bn)κ1(zn, z) + c.

In this paper we are focusing mainly in the complex Gaussian

kernel. It is important to emphasize that, in this case, the

induced kernel 2κ1 is not the real Gaussian rbf. Figure 1 shows

the element Φ((0, 0)T ) = 2κ1(·, (0, 0)
T ) of the induced real

feature space.

V. EXPERIMENTS

To demonstrate the performance of the proposed algorithmic

scheme, we perform a regression test on the complex function

sinc(z). Figures 3 and 4 show the real and the imaginary parts

of the estimated sinc function from the performed complex

SVR task. For the training data we used an orthogonal grid

of 33× 9 actual points of the sinc function. Figures 5 and 6

show a similar regression task on the complex sinc function

corrupted by a mixture of white Gaussian noise together with

some impulses. Note the excellent visual results obtained by

the corrupted training data in the second case.

In all the performed experiments, the geometric SVM

algorithm was employed using the complex Gaussian kernel

(see [23]). The parameters of the SVR task were chosen as

t = 0.25, C = 1000, ǫ = 0.1.

VI. CONCLUSIONS

We presented a framework of support vector regression

for complex data using pure complex kernels, exploiting the

recently developed Wirtinger’s calculus for complex RKHS’s

and the notions of widely linear estimation. We showed that

this problem is equivalent to solving two separate real SVR

tasks employing an induced real kernel (figure 2). The induced

kernel depends on the choice of the complex kernel and it is

not one of the usual kernels used in the literature. Although

the machinery presented here might seem similar to the dual

channel approach, they have important differences. The most

important one is due to the incorporation of the induced kernel

κ1, which allows us to exploit the complex structure of the

space, which is lost in the dual channel approach. As an

example we studied the complex Gaussian kernel and showed

by example that the induced kernel is not the real Gaussian

rbf. To the best of our knowledge this kernel has not appeared

before in the literature. Hence, treating complex tasks directly

in the complex plane, opens the way of employing novel

kernels.
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Fig. 3. The real part (Re(sinc(z))) of the estimated sinc
function from the complex SV regression. The points shown
in the figure are the real parts of the training data used in the
simulation.
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Fig. 4. The imaginary part (Im(sinc(z))) of the estimated sinc
function from the complex SV regression. The points shown in
the figure are the imaginary parts of the training data used in
the simulation.
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Fig. 5. The real part (Re(sinc(z))) of the estimated sinc

function from the complex SV regression. The points shown in
the figure are the real parts of the noisy training data used in
the simulation.
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